

真空系統的設計、腔體設計及控制與操作及軟體撰寫

陳智明

0932578559

真空系統建置須考量如下

主要區別

- •壓力範圍
- •製程方式
- •抽氣方式

次要項目

- 真空計選用
- 真空幫浦選用
- 閥門選用
- 材料選用
- 腔體大小形狀
- 溫度
- 氣電引入
- 安全設計
- 容易安裝 日後容易維修
- 容易操作
- 操控系統

以上主要項目次要項目互相影響互相牽制才有結論

紀錄

設計Chamber 需考量事項

- 大小
- 形體
- 強度
- 使用的真空度
- Flange
- 温度
- 腐蝕性?
- 引入
- 機械傳輸 轉動
- 未來 保養&破大氣的頻率
-(略)

- 適度大小
- 圓柱, 方形, 圓形,......
- 壓力產生的形變(1kg/cm2) & 腔們強度, 載重(Valve, Pump...)
- 304, 316, 304ESR, 鋁合金,
- ISO ,ASA, Conflat Flange.....
- ORING材質, All Metal(硬鋼咬軟銅,硬鋁 壓軟鋁)
- 各式引入
- 冷卻水,(超低溫)Helium Cryogenic,液態 氦,氣,電,ROBOT,,,,,,
- N/A
-(略)

設計Chamber 需考量事項-本公司圖例

- Flanges 多寡, Size, Oring or All metal (CFF, ISO, KF, ANSI?)
- 是否需要視窗
- Turbo pump/Cryo pump 採 横掛 或垂直 • 震動考量
- Feedthrough

冰研應用股份有限公司

Advanced HiVac Application Co., LTD

本公司過去圖例

冰研應用股份有限公司

Advanced HiVac Application Co., LTI

本公司圖例

Vacuum Levels

Vacuum Pumps-真空幫浦選擇

Pumping System Ranges

如何選擇低真空幫浦

考慮項目

- 終極壓力
- Pumping Speed (必須考量在不同壓力下的抽氣速度)
- Cost
- 乾式或油式,水冷或氣冷
- 腐蝕程度 粉塵程度
- 耗電及變頻節能
- Dimension
- Noise & Vibration...
- MTTF
- 日後保養價格

各種形式的低真空幫浦

- 薄膜幫浦
- Oil Rotary Vane pump
- Dry Scroll Pump
- 多級魯式幫浦
- •

如何選擇高真空幫浦

(超)高真空幫浦

- Turbo Pump
- Cryo pump
- Diffusion Pump
- Ion Pump/TSP/NEG
- 複合式幫浦

選擇高真空幫浦的重點

- •期待的真空度/時間
- Cost & Reliability
- MTTF & 日後維護成本
- 供應商

Turbo 跟 Cryo pump 的主要差異及選擇

Turbo pump

- 1. Turbo Pump 的價錢隨著抽氣速 度成正比
- 2. 高壓(10Torr)就能有抽氣能力
- 3. 抽氣能力弱(Gas Independent)
- 4. 連續性不用再生
- 5. 50/50 使用 Gate Valve
- 6. 省電(<50 watt)
- 7. 體積小
- 8. 其他

Cryo pump

- 1. Cryo pump 的價錢, 只有2個等級
- 2. 5.0E-2 Torr 才能開始抽氣
- 3. 抽氣能力強(Gas Independent)
- 4. 需要再生,再生耗時4小時
- 5. 99%需要 Gate Valve
- 6. 耗電 (>2000 watt)
- 7. 體積大
- 8. 其他

冰研應用股份有限公司

Advanced HiVac Application Co., LTI

CRYOPUMPING BASICS:

Operation - Cryoadsorption
Air gases and water vapor still condensed

- noncondensible gases captured.

冰研應用股份有限公司

Advanced HiVac Application Co., LTD

GAS LOAD and Pump througtput

•Another name for Q, the throughput, is gas load. Where does gas load, "Q" come from?

$$Q_{TOTAL} = Q_{VOLUME} + Q_{LEAK} + Q_{OUTGAS} + Q_{DIFFUSION} + Q_{PERMEATION}$$

選擇Valves

- Gate Valve
- Butterfly Valve
- Roughing Valves(inline/right angle)
- Needle valve
- Ball valve
- 進氣閥
- 微漏閥
- •

·不同的閥門有其功能性,其中 需考量真空度氣導逸氣開關 次數洩漏率價錢......

選擇真空計

Types of Vacuum Gauges

Types of Vacuum Gauges (cont.)

Ranges of Vacuum Gauges

決定真空行程

- 1 Chamber
- 2 Roughing Line
- 3 Roughing Valve
- 4 Roughing Gauge
- 5 Roughing Pump
- 5a Forepump
- 6 Foreline
- 7 Foreline Valve
- 8 Foreline Gauge
- 9 High Vacuum Pump
- 10 High Vacuum Valve
- 11 Vent Valve
- 12 High Vacuum Gauge

Table 2-4 Dual Mechanical Pump System Valve Sequence

State	Vent Valve	Rough Valve	Test Valve	Remarks
Pre-Vented	Closed	Closed	Closed	The Pre-Vented state allows time to ensure that all valves are closed before any open. The time spent in the pre-vented state depends on valve actuation time.
Vented	Opened	Closed	Closed	The Vented state places the fixture at atmosphere. The backing primary pump keeps the turbo backed.
Pre-Roughing	Closed	Closed	Closed	The Pre-Roughing state allows time to ensure that all valves are closed before any open. The time spent in the pre-roughing state depends on valve actuation time.
Roughing	Closed	Opened	Closed	The Roughing state brings the fixture to vacuum.
Test	Closed	Closed	Opened	The Test Valve re-opens at the appropriate foreline pressure, exposing the fixture to the foreline.

範例一簡單版:Leak Detectors Valves Logistics

Figure 2-2 Dual Mechanical Pump Configuration

Table 2-4 Dual Mechanical Pump System Valve Sequence

State	Vent Valve	Rough Valve	Test Valve	Remarks			
Pre-Vented	Closed	Closed	Closed	The Pre-Vented state allows time to ensure that all valves are closed before any open. The time spent in the pre-vented state depends on valve actuation time.			
Vented	Opened	Closed	Closed	The Vented state places the fixture at atmosphere. The backing primary pump keeps the turbo backed.			
Pre-Roughing	Closed	Closed	Closed	The Pre-Roughing state allows time to ensure that all valves are closed before any open. The time spent in the pre-roughing state depends on valve actuation time.			
Roughing	Closed	Opened	Closed	The Roughing state brings the fixture to vacuum.			
Test	st Closed Closed Opene		Opened	The Test Valve re-opens at the appropriate foreline pressure, exposing the fixture to the foreline.			

範例二複雜版-受客戶委託開發的高階質譜儀範例

部分邏輯行程

ESI-Q-TOF↔ 質譜儀↔	Power·on· ← (no·vacuum)←	Pump·down⊄	Ready↩	Data- acquisition←	Venting←	Service ⁽²⁾	Shut∙down←	÷
Main-board←	On←	On←	On←	On←	On←	On←	Off€	←.
Mechanical· pump·1←	Off€	Wait-5s-and-turn-on- ← (monitor-I1)←	On-(monitor-l1)←	On (monitor I) -	Off- ←	Can-turn-on-manually	Off€	←
Mechanical· pump·2←	Off←	Wait-5s-and-turn-on- ← (monitor-I2)←	On-(monitor-I2)←	On·(monitor·I)· ←	Wait-5s-and- turn-off- ←	Can·turn·on·manually⊲	Off€	←
Turbo·pump·1← ←	Offel	When Valve 1 on and P1 < 300 mtorr, turn on (monitor speed, power)	On·(monitor· speed,·power)←	On·(monitor- speed, power)←	Off-(monitor- speed, power)⊲	Can turn on manually (with certain conditions) ←	Off ^c	-
Turbo·pump·2 ^{c3}	Off	When Valve 2 on and P2 < 100 mtorr, turn on (monitor speed, power)*	On-(monitor- speed, power)←	On·(monitor- speed, power)←	Off (monitor speed, power)	Can turn on manually (with certain conditions) ←	Off₽	÷
Turbo·pump·3<	Off¢3	When Valve 2 on and P2/P4 < 100 mtorr, turn on (monitor speed, power)*	On-(monitor- speed, ·power) ^{←3}	On·(monitor- speed, power) ²	Off-(monitor- speed, power)	Can·turn·on·manually· (with·certain· conditions)←	Off€	÷

冰研應用股份有限公司

Advanced HiVac Application Co., LTD

紀錄

日期	時間	毫秒	Eq ID	S/N	Op ID	Result Rate	Trend
2018/6/13	9:22:22	240	0	0	0	20.7E-09	-8.93
2018/6/13	9:22:23	540	0	0	0	20.7E-09	-8.929
2018/6/13	9:22:24	210	0	0	0	20.7E-09	-8.928
2018/6/13	9:22:25	310	0	0	0	20.7E-09	-8.926
2018/6/13	9:22:26	280	0	0	0	20.8E-09	-8.92
2018/6/13	9:22:27	270	0	0	0	20.1E-09	-8.99
2018/6/13	9:22:28	230	0	0	0	20.0E-09	-8.999
2018/6/13	9:22:29	220	0	0	0	20.0E-09	-8.999
2018/6/13	9:22:30	320	0	0	0	20.0E-09	-8.999
2018/6/13	9:22:31	300	0	0	0	20.0E-09	-8.999
2018/6/13	9:22:32	270	0	0	0	20.0E-09	-8.999
2018/6/13	9:22:33	250	0	0	0	20.0E-09	-8.999
2018/6/13	9:22:34	220	0	0	0	20.0E-09	-8.999
2018/6/13	9:22:35	320	0	0	0	20.0E-09	-8.999
2018/6/13	9:22:36	300	0	0	0	20.0E-09	-8.999
2018/6/13	9:22:37	290	0	0	0	20.0E-09	-8.999
2018/6/13	9:22:38	270	0	0	0	20.0E-09	-8.999
2018/6/13	9:22:39	240	0	0	0	20.0E-09	-8.999

Endura® SL System Layout

控制系統需要控制讀取的元件

- Turbo Pump
- Ion Pump/TSP
- Primary Pump
- Hi /Low Vacuum Gauges
- Sensors (Position, Temperature....)

•

軟體

- Window, UNIX, DOS, LABVIEW...
- AHA 採 PLC +HMI

•

- AMAT/ Varian Implanter/ R&D
- 小型系統/遠端監控/Cost Saving

•

冰研標準版的五合一真空系統控制器

- Ion pump
- Turbo Pump
- Roughing Pump
- Vacuum Gauges
- A Valve Control C HiVa C A
 - Other Control(Heater on/off, Power on/off)

冰研標準版的五合一真空系統控制器

